水环境中痕量汞的激光点火辅助火花诱导击 穿光谱高灵敏检测

李 关 姜 杰 张 谦 陈钰琦* 李润华

(华南理工大学理学院物理系,广东广州 510640)

摘要 利用电沉积的方法将天然水中的痕量汞离子富集到一个高纯铜棒表面,从而克服用等离子体光谱技术直接 分析水样品时水珠溅射的影响和水分子对等离子体中原子辐射的淬灭效应。激光点火显著提高了火花放电的稳 定性,降低了放电电压和电流,并同时增强了火花放电等离子体中汞的原子辐射。采用激光点火辅助火花诱导击 穿光谱(LI-SIBS)技术,并在富集电压为 7.5 V,富集时间为 10 min,放电电压为 4000 V 的条件下实验得到天然水 中汞离子的校正曲线。该技术对于水中汞离子的检出限能够达到 1 μg/L 质量浓度,没有附加污染和汞的记忆。 关键词 光谱学;火花诱导击穿光谱;电沉积;汞;天然水

中图分类号 O433.4 文献标识码 A doi: 10.3788/CJL201138.0715002

High Sensitive Detection of Trace Hg(II) in Natural Water with Laser Ignition Assisted Spark-Induced Breakdown Spectroscopy

Li Guan Jiang Jie Zhang Qian Chen Yuqi Li Runhua

(Department of Physics, School of Science, South China University of Science and Technology, Guangzhou, Guangdong 510640, China)

Abstract The trace Hg in natural water was electrically deposited on the surface of a high-purity copper rod which can effectively avoid the problems existed in directly analyzing aqueous solutions with plasma emission spectroscopy, such as the effect of water sputtering and atomic emissions quenching effect due to water molecules in plasma. Discharge stability is improved and the required voltage and current for stable discharge are decreased under the assistance of laser ignition in spark-induced breakdown spectroscopy (SIBS). Laser-ignition technique is able to enhance atomic emission of Hg in spark-induced plasma. The calibration curve of Hg in natural water is built with laser-ignition assisted spark-induced breakdown spectroscopy (LI-SIBS) technique under the condition of 7.5 V deposition voltage, 10 min deposition time and 4000 V discharge voltage. Detection limit of mercury reaches to 1 μ g/L under current condition. There are no any additional pollution and memory effect for Hg in this rapid and sensitive technique.

Key words spectroscopy; spark-induced breakdown spectroscopy; electrical-deposition; mercury; natural water OCIS codes 300.6500; 300.6210; 020.2070

1 引 言

国际上对环境中汞的含量提出了非常严格的限制,美国环境保护署对生活饮用水中总汞质量浓度

作者简介:李 关(1986—),女,硕士研究生,主要从事原子分子光谱与激光光谱学等方面的研究。

E-mail: 121055859@qq. com

导师简介:李润华(1967—),男,博士,教授,主要从事原子分子光谱与激光光谱学等方面的研究。

E-mail: rhli@scut.edu.cn

* 通信联系人。E-mail: chenyuqi@scut.edu.cn

规定必须小于 2 µg/L^[1]。然而随着现代工业的发展, 汞不可避免地会经过各种途径进入环境中, 尤其是水环境中, 形成一定程度的汞污染。因此建立和

收稿日期: 2011-03-08; 收到修改稿日期: 2011-04-14

基金项目:国家自然科学基金(10874047)资助课题。

发展一种快速、便利和高灵敏的水环境汞污染监测 技术,对于有效控制汞的危害具有非常重要的意义。 传统的光谱和质谱仪器分析方法,例如原子荧光光 谱(AFS)、原子吸收光谱(AAS)、电感耦合等离子 体原子发射光谱和质谱(ICP-AES/MS)虽然其灵敏 度和稳定性能够满足水环境中痕量汞的分析要求, 但由于样品前处理过程长、系统复杂,因而无法实现 快速和野外实地的分析^[2~6]。电化学分析仪虽然可 以实现野外流动监测,但其灵敏度通常没有光谱和 质谱分析方法高。

激光诱导击穿光谱(LIBS)技术由于无需样品 前处理,因而可以实现各种样品中有害重金属元素 的快速、无接触和在线检测^[7~10]。但是传统的LIBS 技术,由于受到等离子体中强的韧致电子辐射所造 成的背景干扰,灵敏度本来就不高。当用LIBS 技 术直接分析水中的金属元素时,水的溅射和水分子 对激光等离子体中的原子辐射的淬灭效应更进一步 降低了其光谱分析灵敏度。此外,无论是对于固体 样品还是水溶液,用LIBS 技术分析汞的灵敏度要 比分析其他重金属元素,比如铅、镉、铬的要低 1~2 个数量级^[11,12]。同时,由于汞的高毒性,其限量标 准又比其他重金属更为严格。因此用传统的LIBS 技术很难实现水环境中痕量汞的监测。

汞在激光等离子体中的辐射比较弱,主要由于: 1)在有氧的环境下,氧和氧的化合物对汞最强主分 析线 253.65 nm 跃迁上能级的淬灭效应降低了该 波长上汞的原子辐射^[13];2)在有氧的环境下,氧会 降低等离子体的温度和电子的激发能,而对于汞的 253.65 nm 跃迁,电子激发截面在 4.5~6.5 eV 之 间呈现出一个很窄的尖峰,因此电子激发能的微小 降低会大幅降低其激发截面^[14];3)在激光等离子体 中汞的复合速率远高于其他原子^[15]。

电火花诱导击穿光谱(SIBS)是一种与 LIBS 平 行的光谱分析技术,也被尝试应用于多种用途的现 场快速元素分析。虽然 SIBS 技术中的高压电源比 LIBS 中的激光器更简单和便宜,使得 SIBS 系统要 比 LIBS 系统更经济适用,但是 SIBS 也有它固有的 缺点,比如高电压和大电流火花放电所产生的背景 光很强(其背景来源有韧致电子辐射和电极材料的 原子辐射);放电的稳定性受样品表面粗糙度的影 响;另外高电压和大电流的电源对于工作人员的危 害也很大。为了克服样品表面粗糙度对放电稳定性 所造成的影响,日本的 Matsuta 等^[16]采用在放电之 前用一束激光脉冲对放电位置进行指向定位,取得 了较好的效果。其研究表明,该技术能够较好地提 高火花放电的稳定性,但未见其报道相关的光谱分 析工作。

为了解决水环境中痕量汞的高灵敏检测这一技术难题,本文提出了激光点火辅助火花诱导击穿光 谱(LI-SIBS)的方法。并采用电沉积的方法,将水中 痕量的汞离子还原并富集到铜棒表面,然后再对其 进行 LI-SIBS 光谱分析,以此来消除水对光谱分析 过程的影响。

2 实 验

2.1 样品准备

为了进行定量分析,首先配制了一系列浓度已 知的参考样品。考虑到自来水在钙、镁离子浓度等 方面与天然水的差异不大,为了方便起见,在实验中 选取自来水来开展研究工作,但所得到的结果仍适 用于江河湖泊等天然水样品。利用化学计量的方 法,按需要称量出一定量分析纯的醋酸汞,将其配制 成质量浓度为 200 mg/L 的母液,所用溶剂为自来 水。然后将其稀释至不同浓度。

利用电沉积的方法将水溶液中痕量的汞离子还 原并富集到纯铜棒表面再进行测量。电沉积的装置 在文献[17]中有详细描述。本实验与其唯一的区别 在于富集电极用铜棒代替了铝棒,其原因是铜与汞 易形成汞齐。这里采用的铜棒纯度达 99%,铜片中 汞的可能质量分数低于 100×10⁻⁹,因此实验中其 影响可以忽略不计。铜棒长 42 mm 直径 7 mm。富 集电压在 5~10 V 之间,富集时间一般为 10 min。

2.2 实验装置

图 1 为实验装置示意图。脉冲持续时间为 12 ns、重复频率为 5 Hz 的一台电光调 Q Nd: YAG 激光器所输出的基频光(中心波长 λ =1064 nm)被 一球透镜 L1(BK7,焦距 f_L =150 mm)聚焦到铜棒 上面。分束片 BS 将一小部分激光反射至光电二极 管 PD上,其产生的同步信号用于触发示波器和脉 冲延时信号发生器,脉冲延时信号发生器再去控制 一台高压脉冲电源(电压 0~4500 V,最大放电电流 为10 A)的高压输出,其延时和脉宽均可调节。一 直径为 2 mm 的放电钨针水平放在距铜棒 4 mm 处 并与激光传播方向呈约 15°,钨针表面被打磨成半 圆球形。钨针和铜棒分别作为阳极和阴极,通电后 方波高压脉冲在两极间产生火花放电。火花放电产 生的发射光经球透镜 L2(石英, f_L =150 mm)收集变 为平行光束。该光束经反射镜 RM 反射后被球透镜 L3(石英, f_L=250 mm)汇聚在一个焦距为 50 cm 单 色仪的入射狭缝处。单色仪的衍射光栅刻线密度为 2400 L/mm,并配置了一个光电倍增管(Hamamatsu, CR114)探测器。电信号被一台250 MHz的数字存储 示波器监测,波形数据被该示波器经一个通用接口 总线(GPIB)接口传输到计算机进行分析。所有实 验都是在空气中 101.325 kPa 的条件下进行的,完 成一次光谱测量的时间短于1 min。实验过程中,铜 棒被安装在一个样品运动台上,使其可以做平移和 轴向转动以保证每一次火花放电都在样品的不同位 置,从而保证了产生的等离子体的稳定性,也有助于 得到均匀可靠的光谱。

图 1 LI-SIBS 实验装置 Fig. 1 Experimental setup of LI-SIBS

3 结果与讨论

3.1 实验条件优化

图 2 给出了水溶液中 Hg²⁺ 质量浓度为 10 mg/L、 电脉冲相对激光脉冲延时为 10 µs 时,Hg²⁺ 原子辐射 (253.65 nm)和背景(254.2 nm)随时间演化的情况。可 以看出,与 LIBS 产生的汞信号相比,在整个放电持 续范围内,火花放电大幅增强了激光等离子体中汞 原子的辐射强度并延长了其辐射时间,显著增强了

汞的信号与背景比。由于高压电源的开关效应,在 电脉冲的开始和结束会产生尖峰脉冲状的射频干 扰。为了尽量避开其对信号积分强度的影响,在处 理实验结果时,数据采样门选择位于 15~60 μs 之间。

为了获得较高的分析灵敏度,对电沉积和 LI-SIBS 的实验条件进行了优化,研究了 LI-SIBS 测量 中富集电压和放电电压对汞元素信号的影响。水中 的 Ca²⁺和 Mg²⁺的不同浓度的影响在文献[17]中有 详细的分析。在实验中配制相同浓度的醋酸汞溶液, 使用不同的富集电压和放电电压分别进行实验,然后 比较汞在 253.65 nm 信号线的相对强度。图 3,4 分 别显示了汞离子在天然水中质量浓度为 2 mg/L,富 集时间为 10 min 时汞原子发射强度与富集电压和放 电电压的关系。

Fig. 3 Relation of Hg atomic emission to the deposition voltage

图 4 汞原子的辐射强度与放电电压的关系 Fig. 4 Relation of Hg atomic emission to the discharge voltage

由图 3 可见,在天然水中的富集电压曲线在约 7.5 V 时信号强度有个最大值。这是由于天然水中 Ca²⁺和 Mg²⁺的含量不可忽略,在电沉积过程中,这 些离子会参与电化学反应,在铜棒表面产生气泡。 同时随着富集电压的增大气泡逐渐增多,水体变得 混浊,导致汞的富集效率也随之下降。由图 4 可见, 在 101.325 kPa,放电电压在 3000 V 左右即可实现 击穿。由于激光的作用,大大降低了所需的放电电 压。随着放电电压的增强,信号强度也增强,但过高 的电压会产生较大的背景,放电电压的选取必须在 一个合适的范围。因此采用的放电电压为 4000 V, 并在放电电路中串联 150 Ω 的限流电阻,以获得最 佳的信号背景比。

3.2 定标曲线和检出限

为了对水中汞离子含量做定量分析,制定了汞 的校正曲线。由于等离子体辐射的饱和吸收效应, 汞的校正曲线需要用非线性公式来拟合:

 $I = s \cdot a \{1 - \exp[-(C + C_0)/a]\},$ (1) 式中 I 为光谱信号强度; s 为分析灵敏度,即信号强 度与溶液浓度之比; a 为常数,其值为产生饱和吸收 效应时对应的临界溶液浓度; C 为溶液浓度; C 为天 然水中可能存在的汞离子的浓度,在此可以忽略不 计。元素的检出限为

$$L_{\rm OD} = \frac{3\sigma_{\rm B}}{s},\tag{2}$$

式中 σ_B 为背景的标准差,通过反复的实验测量,确定在 LI-SIBS 实验中 σ_B 大约为背景信号强度的5%。

图 5 是富集电压为 7.5 V,富集时间为 10 min 时 从 LI-SIBS 信号(时间积分强度)中得到的 Hg^{2+} 校正 曲线,其中对应的拟合参数为 $s=897.7\pm12.7$, a=5.7±0.4。通过此校正曲线就能够采用相同的分析 流程和实验条件来测定未知的环境水样品中汞的信 号强度而推算出其浓度,从而达到定量分析的目的。 根据实 验数据,可以得到采用 LI-SIBS 方法时, Hg^{2+} 的检出限为 1 μ g/L 质量浓度。因此,采用 LI-SIBS 技术能有效地克服 LIBS 在水溶液痕量汞分析 中灵敏度低的缺点。

研究表明,激光点火辅助有效地降低了火花放 电所需的电压和电流,因此降低了对高压电源的要

图 5 汞的校正曲线

求,同时操作人员也更为安全。激光点火辅助还提高了火花放电的稳定性,大幅改善了其信噪比。与 LIBS 技术相比,SIBS 技术还可以延长 LIBS 中汞原 子的发光时间,有利于提高汞原子辐射的时间积分 强度。另外,在传统的光谱/质谱分析中,汞显示出 一种非常特殊的"记忆"效应而会对分析结果产生影 响,这种效应是由于汞在先前的实验中附着在金属 表面而在后面的分析中又缓慢释放出来而造成 的^[18]。而结合电沉积富集的 LI-SIBS 光谱分析技 术,由于每一次测量所用到的铜棒都是单次富集和 测量,因此不会存在这种"记忆"效应的干扰。当然, 由于汞仅仅附着在铜棒表面,铜棒经过适当抛光后 仍可以再次使用。

4 结 论

使用电沉积的方法,将天然水溶液中的痕量汞 富集在高纯铜棒表面,然后利用 LI-SIBS 技术进行 定量分析。研究结果表明,采用激光激发,显著地改 善了火花放电的稳定性,降低了火花放电所需的电 压和电流。火花放电大幅增强了激光等离子体中汞 原子的辐射强度并延长了其辐射时间,显著增强了 LI-SIBS 中信号与背景之比。利用该技术,能够实 现对水中痕量汞离子的高灵敏检测,其检出限达到 了1 µg/L 质量浓度的水平。

参考文献

- 1 United States Environmental Protection Agency, Drinking Water Contaminants, http://www.epa.gov/safewater/contaminants/ dw_contamfs/mercury.html. May 2009
- 2 C. M. Rico, J. M. Fernández-Romero, M. D. Luque de Castro. Laser ablation-atomic fluorescence approach for the determination of mercury [J]. Fresenius J. Analytical Chemistry, 1999, 365(4): 320~324
- 3 H. Erxleben, J. Ruzicka. Atomic absorption spectroscopy for mercury, automated by sequential injection and miniaturized in lab-on-valve system [J]. Analytical Chemistry, 2005, 77(16): 5124~5128
- 4 Z. L. Zhu, G. C. Chan, S. J. Ray *et al.*. Use of a solution cathode glow discharge for cold vapor generation of mercury with determination by ICP-atomic emission spectrometry [J]. *Analytical Chemistry*, 2008, **80**(18): 7043~7050
- 5 J. Riondato, F. Vanhaecke, L. Moens *et al.*. Fast and reliable determination of (ultra-) trace and/or spectrally interfered elements in water by sector field ICP-MS [J]. J. Analytical Atomic Spectrometry, 2000, 15(4): 341~345
- 6 Liu Liping, Lü Chao, Wang Ying. Investigation of mercury speciation analysis in aquatic products by liquid chromatographyinductively coupled plasma-mass spectrometry [J]. J. Instrumental Analysis, 2010, 29(8): 767~771

刘丽萍,吕 超,王 颖.液相色谱-电感耦合等离子质谱联用 技术测定水产品中汞化合物形态分析方法探讨[J].分析测试学 报,2010,29(8):767~771

- 7 Xu Hongguang, Guan Shicheng, Fu Yuanxia *et al.*. Laser induced breakdown spectroscopy of the trace metal element Pb in soil [J]. *Chinese J. Lasers*, 2007, 34(4): 577~581
 许洪光,管士成,傅院霞等. 土壤中微量重金属元素 Pb 的激光
 诱导击穿谱 [J]. 中国激光, 2007, 34(4): 577~581
- 8 Li Jie, Lu Jidong, Lin Zhaoxiang et al.. Experimental analysis of spectra of metallic elements in solid samples by laser-induced breakdown spectroscopy [J]. Chinese J. Lasers, 2009, 36(11): 2882~2887

李 捷,陆继东,林兆祥等.激光诱导击穿固体样品中金属元素 光谱的实验研究 [J]. 中国激光,2009,**36**(11):2882~2887

9 Zhao Fang, Zhang Qian, Xiong Wei et al.. High sensitive detection of trace heavy metals in water by laser-induced breakdown spectroscopy [J]. Environmental Science & Technology, 2010, 33(3): 137~140

赵 芳,张 谦,熊 威等.水中痕量重金属激光诱导击穿光谱 高灵敏检测 [J]. 环境科学与技术,2010,**33**(3):137~140

10 Lu Linxuan, Wang Zixin, Zhou Jianying *et al.*. Rapid analysis of heavy metals in paints with laser-induced breakdown spectroscopy
[J]. *High Power Laser and Particle Beams*, 2008, 20(11): 1827~1831

陆林轩,王自鑫,周建英等.用激光诱导击穿光谱快速分析油漆 中的重金属含量[J].强激光与粒子束,2008,20(11): 1827~1831

11 A. J. Hunter, R. T. Wainner, L. G. Piper *et al.*. Rapid field screening of soils for heavy metals with spark-induced breakdown spectroscopy [J]. *Appl. Opt.*, 2003, **42**(12): 2102~2109

12 R. Knopp, F. J. Scherbaum, J. I. Kim. Laser induced

breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions [J]. Fresenius J. Analytical Chemistry, 1996, 355(1): $16 \sim 20$

- 13 R. L. Gleason, D. W. Hahn. The effects of oxygen on the detection of mercury using laser-induced breakdown spectroscopy [J]. Spectrochimica Acta Part B, 2001, 56(4): 419~430
- 14 K. Hadidi, P. P. Woskov, G. J. Flores *et al.*. Effect of oxygen concentration on the detection of mercury in an atmospheric microwave discharge [J]. *Japn. Appl. Phys.*, 1999, 38(7B): 4595~4600
- 15 N. M. Shaikh, S. Hafeez, M. A. Baig. Laser induced breakdown spectroscopy of zinc, cadmium and mercury plasma parameters produced by the 1064 nm, 532 nm, and 355 nm of Nd :YAG laser [J]. 2009 IEEE 36th International Conference on Plasma Science (ICOPS), 2009, 1
- 16 H. Matsuta, K. Kitagawa, K. Wagatsuma. Stabilization of the spark-discharge point on a sample surface by laser irradiation for steel analysis [J]. Analytical Sciences, 2006, 22 (10): 1275~1277
- 17 F. Zhang, Z. M. Chen, F. P. Zhang *et al.*. Ultra-sensitive detection of heavy metal ions in tap water by laser-induced breakdown spectroscopy with the assistance of electricaldeposition [J]. *Anal. Methods*, 2010, 2(4): 408~414
- 18 X. P. Zhu, S. D. Alexandratos. Determination of trace levels of mercury in aqueous solutions by inductively coupled plasma atomic emission spectrometry: elimination of the "memory effect" [J]. Microchemical Journal, 2007, 86(1): 37~41